Home  |  Top News  |  Most Popular  |  Video  |  Multimedia  |  News Feeds  |  Feedback
  Medicine  |  Nature & Earth  |  Biology  |  Technology & Engineering  |  Space & Planetary  |  Psychology  |  Physics & Chemistry  |  Economics  |  Archaeology
Top > Medicine, Health Care > New Genetic Clues to Why… >
New Genetic Clues to Why Most Bone Marrow Transplant Patients Develop Graft-versus-host Disease

Published: September 4, 2012.
By Fred Hutchinson Cancer Research Center
http://www.fhcrc.org

SEATTLE – A team of scientists led by a bone marrow transplant researcher at Fred Hutchinson Cancer Research Center has shed new light on why most bone marrow transplant patients who receive tissue-matched cells from unrelated donors still suffer acute graft-versus-host disease (GVHD). The answer appears to lie in the discovery of previously undetected genetic differences in the DNA of patients and unrelated marrow donors.

The laboratory-based study findings by Effie Petersdorf, M.D., and colleagues soon will be translated to the clinic when a Hutchinson Center transplant protocol – the first of its kind –opens at Seattle Cancer Care Alliance later this year to test patients and donors for these genetic differences. The goal is to further refine the tissue-matching process to reduce the incidence of GVHD, which affects about 80 percent of patients and has been a longtime, vexing challenge for transplant doctors.

GVHD occurs when the donor immune system (the graft) begins to circulate in the patient's bloodstream and recognizes the host's (the patient's) tissue as foreign. When this happens, the new immune system attacks the recipient's tissues such as the liver, gastrointestinal system and skin.

Bone marrow and stem cell transplants are used to treat a variety of malignant blood diseases such as leukemia. Hematopoietic cell transplantation was pioneered at the Hutchinson Center in the 1970s and continues to be a major focus of research and clinical trials to improve survival and reduce side effects.

Published recently in Science Translational Medicine, the study details how researchers identified two specific single-nucleotide polymorphisms, also called SNPs (pronounced "snips"), within the major histocompatibility complex (MHC) in human DNA that are markers for either acute GVHD or disease-free survival. These markers are distinct from the human leukocyte antigens (HLA), found on the same chromosome as the MHC, that are traditionally used to match recipients and donors, a process called tissue typing.

Researchers found that if a patient and donor have different SNPs, the patient was at increased risk of GVHD or a lower chance of disease-free survival. The scientists surmised that genes located near these SNPs must be involved in that process.

"The question I wanted to ask with this study is whether there could be genes we don't know about that are located close to the major histocompatibility complex that could be influencing GVHD risk," said Petersdorf, a member of the Hutchinson Center's Clinical Research Division. "Now that we know what to test for we can begin screening for the presence of the SNPs in patients and donors and select the optimal donor whose SNP profile will benefit the patient the most."

SNP genotyping is only beneficial for patients when they have multiple matched unrelated donors in order to determine which donor is the optimal match. Fortunately, this is fairly common, according to the study. Of 230 patients who had two or more HLA-matched donors, significant percentages also had at least one donor who was SNP-matched.

A SNP is a base change that involves two or more of the four bases (A, C, T and G) that comprise DNA, and is the simplest form of DNA variation on the human genome. SNPs serve as signposts or markers for nearby genes that are the actual drivers for the effect that they have on disease.

The next step for researchers is to sequence the MHC region of genes close to the SNP locations in order to identify which genes are directly responsible for the correlations of survival and GVHD.

"Once we discover those genes we will characterize them and then we may be able to further refine donor matching," Petersdorf said.

For this study, researchers conducted a retrospective discovery-validation study that examined DNA from more than 4,000 former transplant patients nationwide. They studied 1,120 SNPs in the MHC on chromosome 6 – the region where all tissue typing and immune function genes are densely packed. They narrowed those SNPs to two that appeared to correlate with disease-free survival and acute GVHD.

The National Institutes of Health funded the study. Researchers from the University of Washington; the Centers for International Blood and Marrow Transplant Research in Minneapolis, Minn., and Milwaukee, Wis.; and the Medical College of Wisconsin contributed to the study.

The Science Translational Medicine paper, "MHC-Resident Variation Affects Risks After Unrelated Donor Hematopoietic Cell Transplantation," can be found at the journal's website: http://stm.sciencemag.org/content/4/144/144ra101.full

At Fred Hutchinson Cancer Research Center, our interdisciplinary teams of world-renowned scientists and humanitarians work together to prevent, diagnose and treat cancer, HIV/AIDS and other diseases. Our researchers, including three Nobel laureates, bring a relentless pursuit and passion for health, knowledge and hope to their work and to the world. For more information, please visit fhcrc.org.



Translate this page: Chinese French German Italian Japanese Korean Portuguese Russian Spanish


Disclaimer: The views expressed in this article are those of the authors and do not necessarily reflect the official policy or position of the ScienceNewsline.
Related »

Variants 
1/22/13 
Scientists Find Gene Interactions That Make Cocaine Abuse Death 8 Times More Likely
By Ohio State University
COLUMBUS, Ohio – Scientists have identified genetic circumstances under which common mutations on two genes interact in the presence of cocaine to produce a nearly eight-fold increased risk of …
Salmon 
6/28/10 
Salmon Genes – a Significant Foundation for Future Research into Salmon
By Norwegian School of Veterinary Science
Through her PhD-research, Heidi Hagen-Larsen has helped to provide new knowledge about the genes of the Atlantic salmon. The identification of genes and gene variants is an important step …
Variants 
4/7/13 
★★★★ 
Finding Genes for Childhood Obesity
By Wellcome Trust Sanger Institute
Researchers have identified four genes newly associated with severe childhood obesity. They also found an increased burden of rare structural variations in severely obese children. The team found …
Studies 
11/13/12 
Glutamate Neurotransmission System May Be Involved with Depression Risk
By Massachusetts General Hospital
Researchers using a new approach to identifying genes associated with depression have found that variants in a group of genes involved in transmission of signals by the neurotransmitter glutamate …
Genes 
12/1/10 
Gene Duplication Detected in Depression
By Children's Hospital of Philadelphia
A large genetic study of people with major depression has found that a duplicated region of DNA on chromosome 5 predisposes people to the disorder. The gene involved plays …
Ion 
6/24/11 
Genetic Testing in Epilepsy - It Takes More Than 1 Gene
By Baylor College of Medicine
HOUSTON - (June 24, 2011) – Imagine two flat screen televisions tuned to the same channel and sitting side-by-side. From a distance, their pictures are virtually the same, however …
More » 

Most Popular - Medicine »
GENES »
Loss of Memory in Alzheimer's Mice Models Reversed Through Gene Therapy
TUMORS »
The Immune System's Redesigned Role in Fighting Cancerous Tumors
LOS ANGELES (March 11, 2014) – Researchers in the Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute eradicated solid tumors in laboratory mice using a novel combination of two targeted agents. …
MUTATIONS »
Applying Math to Biology: Software Identifies Disease-causing Mutations in Undiagnosed Illnesses
(SALT LAKE CITY)–A computational tool developed at the University of Utah (U of U) has successfully identified diseases with unknown gene mutations in three separate cases, U of U …
IRON »
Study: Iron Consumption Can Increase Risk for Heart Disease
WHOOPING »
Impact of Whooping Cough Vaccination Revealed
The most comprehensive study to date of the family of bacteria that causes whooping cough points to more effective vaccine strategies and reveals surprising findings about the bacteria's origin …
ScienceNewsline  |  About  |  Privacy Policy  |  Feedback  |  Mobile  |  Japanese
The selection and placement of stories are determined automatically by a computer program. All contents are copyright of their owners except U.S. Government works. U.S. Government works are assumed to be in the public domain unless otherwise noted. Everything else copyright ScienceNewsline.