Home  |  Top News  |  Most Popular  |  Video  |  Multimedia  |  News Feeds  |  Feedback
  Medicine  |  Nature & Earth  |  Biology  |  Technology & Engineering  |  Space & Planetary  |  Psychology  |  Physics & Chemistry  |  Economics  |  Archaeology
Top > Medicine, Health Care > New Genetic Clues to Why… >
New Genetic Clues to Why Most Bone Marrow Transplant Patients Develop Graft-versus-host Disease

Published: September 4, 2012.
By Fred Hutchinson Cancer Research Center
http://www.fhcrc.org

SEATTLE – A team of scientists led by a bone marrow transplant researcher at Fred Hutchinson Cancer Research Center has shed new light on why most bone marrow transplant patients who receive tissue-matched cells from unrelated donors still suffer acute graft-versus-host disease (GVHD). The answer appears to lie in the discovery of previously undetected genetic differences in the DNA of patients and unrelated marrow donors.

The laboratory-based study findings by Effie Petersdorf, M.D., and colleagues soon will be translated to the clinic when a Hutchinson Center transplant protocol – the first of its kind –opens at Seattle Cancer Care Alliance later this year to test patients and donors for these genetic differences. The goal is to further refine the tissue-matching process to reduce the incidence of GVHD, which affects about 80 percent of patients and has been a longtime, vexing challenge for transplant doctors.

GVHD occurs when the donor immune system (the graft) begins to circulate in the patient's bloodstream and recognizes the host's (the patient's) tissue as foreign. When this happens, the new immune system attacks the recipient's tissues such as the liver, gastrointestinal system and skin.

Bone marrow and stem cell transplants are used to treat a variety of malignant blood diseases such as leukemia. Hematopoietic cell transplantation was pioneered at the Hutchinson Center in the 1970s and continues to be a major focus of research and clinical trials to improve survival and reduce side effects.

Published recently in Science Translational Medicine, the study details how researchers identified two specific single-nucleotide polymorphisms, also called SNPs (pronounced "snips"), within the major histocompatibility complex (MHC) in human DNA that are markers for either acute GVHD or disease-free survival. These markers are distinct from the human leukocyte antigens (HLA), found on the same chromosome as the MHC, that are traditionally used to match recipients and donors, a process called tissue typing.

Researchers found that if a patient and donor have different SNPs, the patient was at increased risk of GVHD or a lower chance of disease-free survival. The scientists surmised that genes located near these SNPs must be involved in that process.

"The question I wanted to ask with this study is whether there could be genes we don't know about that are located close to the major histocompatibility complex that could be influencing GVHD risk," said Petersdorf, a member of the Hutchinson Center's Clinical Research Division. "Now that we know what to test for we can begin screening for the presence of the SNPs in patients and donors and select the optimal donor whose SNP profile will benefit the patient the most."

SNP genotyping is only beneficial for patients when they have multiple matched unrelated donors in order to determine which donor is the optimal match. Fortunately, this is fairly common, according to the study. Of 230 patients who had two or more HLA-matched donors, significant percentages also had at least one donor who was SNP-matched.

A SNP is a base change that involves two or more of the four bases (A, C, T and G) that comprise DNA, and is the simplest form of DNA variation on the human genome. SNPs serve as signposts or markers for nearby genes that are the actual drivers for the effect that they have on disease.

The next step for researchers is to sequence the MHC region of genes close to the SNP locations in order to identify which genes are directly responsible for the correlations of survival and GVHD.

"Once we discover those genes we will characterize them and then we may be able to further refine donor matching," Petersdorf said.

For this study, researchers conducted a retrospective discovery-validation study that examined DNA from more than 4,000 former transplant patients nationwide. They studied 1,120 SNPs in the MHC on chromosome 6 – the region where all tissue typing and immune function genes are densely packed. They narrowed those SNPs to two that appeared to correlate with disease-free survival and acute GVHD.

The National Institutes of Health funded the study. Researchers from the University of Washington; the Centers for International Blood and Marrow Transplant Research in Minneapolis, Minn., and Milwaukee, Wis.; and the Medical College of Wisconsin contributed to the study.

The Science Translational Medicine paper, "MHC-Resident Variation Affects Risks After Unrelated Donor Hematopoietic Cell Transplantation," can be found at the journal's website: http://stm.sciencemag.org/content/4/144/144ra101.full

At Fred Hutchinson Cancer Research Center, our interdisciplinary teams of world-renowned scientists and humanitarians work together to prevent, diagnose and treat cancer, HIV/AIDS and other diseases. Our researchers, including three Nobel laureates, bring a relentless pursuit and passion for health, knowledge and hope to their work and to the world. For more information, please visit fhcrc.org.



Translate this page: Chinese French German Italian Japanese Korean Portuguese Russian Spanish


 
All comments are reviewed before being posted. We cannot accept messages that refer a product, or web site.If you are looking for a response to a question please use our another feedback page.
Related »

Disease 
6/20/11 
Possible Susceptibility Genes Found in Neurodegenerative Disorder
By Mayo Clinic
JACKSONVILLE, Fla. — An international research team, co-led by scientists at Mayo Clinic's campus in Florida, have discovered three potential susceptibility genes for development of progressive supranuclear palsy (PSP), …
Polymorphisms 
5/4/10 
Mayo Clinic Discovers New Genetic Candidates for Irritable Bowel Syndrome
By Mayo Clinic
ROCHESTER, Minn. -- Most people associate serotonin with brain neurology, but over 95 percent of the body's serotonin occurs in the gastrointestinal tract, which has a complex neuronal circuit …
Left 
9/13/13 
Genes Linked to Being Right- Or Left-handed Identified
By University of Oxford
A genetic study has identified a biological process that influences whether we are right handed or left handed. Scientists at the Universities of Oxford, St Andrews, Bristol and …
Genes 
11/17/11 
Increasing Uterine Expression of Developmental Genes May Improve IVF Success
By Cincinnati Children's Hospital Medical Center
New research in Developmental Cell suggests that increasing expression of certain developmental genes at precise times in the uterus might improve pregnancy rates from in vitro fertilization-embryo transfers (IVF-ET), …
Genes 
5/13/10 
★★ 
Tibetans Developed Genes to Help Them Adapt to Life at High Elevations
By University of Utah Health Sciences
SALT LAKE CITY—Researchers have long wondered why the people of the Tibetan Highlands can live at elevations that cause some humans to become life-threateningly ill – and a new …
Vessels 
5/26/10 
Study Pinpoints New Role of Molecule in the Health of Body's Back-up Blood Circulation
By University of North Carolina School of Medicine
So Faber and lead study author Xuming Dai, M.D., Ph.D., of UNC's departments of medicine and physiology, wondered whether collateral vessels would be lost if the levels of nitric …
Neonicotinoid 
7/2/13 
Insecticide Causes Changes in Honeybee Genes, Research Finds
By University of Nottingham
New research by academics at The University of Nottingham has shown that exposure to a neonicotinoid insecticide causes changes to the genes of the honeybee. The study, published …
More » 
 
© Newsline Group  |  About  |  Privacy Policy  |  Feedback  |  Mobile  |  Japanese Edition