Home  |  Top News  |  Most Popular  |  Video  |  Multimedia  |  News Feeds  |  Feedback
  Medicine  |  Nature & Earth  |  Biology  |  Technology & Engineering  |  Space & Planetary  |  Psychology  |  Physics & Chemistry  |  Economics  |  Archaeology
Top > Medicine, Health Care > Scripps Florida Scientists Design Molecule… >
Scripps Florida Scientists Design Molecule That Reverses Some Fragile X Syndrome Defects

Published: September 4, 2012.
By Scripps Research Institute
http://www.scripps.edu

JUPITER, FL - Scientists on the Florida campus of The Scripps Research Institute have designed a compound that shows promise as a potential therapy for one of the diseases closely linked to fragile X syndrome, a genetic condition that causes mental retardation, infertility, and memory impairment, and is the only known single-gene cause of autism.

The study, published online ahead of print in the journal ACS Chemical Biology September 4, 2012, focuses on tremor ataxia syndrome, which usually affects men over the age of 50 and results in Parkinson's like-symptoms—trembling, balance problems, muscle rigidity, as well as some neurological difficulties, including short-term memory loss and severe mood swings.

With fragile X syndrome, tremor ataxia syndrome, and related diseases, the root of the problem is a structural motif known as an "expanded triplet repeat"—in which a series of three nucleotides are repeated more times than normal in the genetic code of affected individuals. This defect, located in the fragile X mental retardation 1 (FMR1) gene, causes serious problems with the processing of RNA.

"While there is an abundance of potential RNA drug targets in disease, no one has any idea how to identify or design small molecules to target these RNAs," said Mathew Disney, a Scripps Research associate professor who led the study. "We have designed a compound capable of targeting the right RNA and reversing the defects that cause fragile X-associated tremor ataxia."

Preventing Havoc

In tremor ataxia syndrome, the expanded triplet repeat leads to the expression of aberrant proteins that wreak widespread havoc. The repeats actually force the normal proteins that regulate RNA splicing—necessary for production of the right kind of proteins—into hiding.

The compound designed by Disney and his colleagues not only improves the RNA splicing process, but also minimizes the ability of repeats to wreak havoc on a cell.

"It stops the repeat-associated defects in cell culture," Disney said, "and at fairly high concentrations, it completely reverses the defects. More importantly, the compound is non-toxic to the cells. It looks like a very good candidate for development, but we're still in the early stages of testing."

Overall, this study reinforces Disney's earlier findings showing it is possible to identify and develop small molecules that target these traditionally recalcitrant RNA defects. In March of this year, Disney published a study in the Journal of the American Chemical Society that described a small molecule that inhibited defects in myotonic dystrophy type 1 RNA in both cellular and animal models of disease.

"We've gotten very good at targeting RNA with small molecules, something a lot of people said couldn't be done," Disney pointed out. "Our approach is evolving into a general method that can be used to target any disease that is associated with an RNA, including, perhaps, fragile X syndrome itself."

The new compound also works as a probe to better understand how these repeats cause fragile X syndrome and how they contribute to tremor ataxia, Disney added.




Show Reference »


Translate this page: Chinese French German Italian Japanese Korean Portuguese Russian Spanish


 
All comments are reviewed before being posted. We cannot accept messages that refer a product, or web site.If you are looking for a response to a question please use our another feedback page.
Related »

Mutation 
12/21/12 
Genetic Defect Causing Fragile X-related Disorders More Common Than Thought
By University of California - Davis Health System
A single genetic defect on the X chromosome that can result in a wide array of conditions — from learning and emotional difficulties to primary ovarian insufficiency in women …
Fragile 
12/13/10 
U-M Researchers Discover Way to Block Neurodegeneration in an Adult Form of Fragile X Syndrome
By University of Michigan Health System
Ann Arbor, Mich.— Expression of a toxic RNA that leads to Fragile X Tremor Ataxia Syndrome is modifiable by genetic or pharmacologic means, according to new research from U-M …
Fragile 
2/27/14 

Scientists Uncover Trigger for Most Common Form of Intellectual Disability And Autism
By Weill Cornell Medical College
Premutation 
6/14/12 
★★ 
Fragile X Gene's Prevalence Suggests Broader Health Risk
By University of Wisconsin-Madison
MADISON – The first U.S. population prevalence study of mutations in the gene that causes fragile X syndrome, the most common inherited form of intellectual disability, suggests the mutation …
Protein 
4/18/13 
Science Surprise: Toxic Protein Made in Unusual Way May Explain Brain Disorder
By University of Michigan Health System
ANN ARBOR, Mich. — A bizarre twist on the usual way proteins are made may explain mysterious symptoms in the grandparents of some children with mental disabilities. The …
Premutation 
8/30/12 
Early Menopause: A Genetic Mouse Model of Human Primary Ovarian Insufficiency
By Emory University
Scientists have established a genetic mouse model for primary ovarian insufficiency (POI), a human condition in which women experience irregular menstrual cycles and reduced fertility, and early exposure to …
Fragile 
10/31/11 

Linking Fragile X Syndrome Proteins And RNA Editing Mistakes at Nerve-muscle Junction
By University of Pennsylvania School of Medicine
Brain 
4/1/14 
New Test Makes Parkinson's-like Disorder of Middle Age Detectable in Young Adulthood
By University of California - Davis Health System
The very earliest signs of a debilitating neurodegenerative disorder, in which physical symptoms are not apparent until the fifth decade of life, are detectable in individuals as young as …
More » 
 
© Newsline Group  |  About  |  Privacy Policy  |  Feedback  |  Mobile  |  Japanese Edition