Home  |  Top News  |  Most Popular  |  Video  |  Multimedia  |  News Feeds  |  Feedback
  Medicine  |  Nature & Earth  |  Biology  |  Technology & Engineering  |  Space & Planetary  |  Psychology  |  Physics & Chemistry  |  Economics  |  Archaeology
Top > Medicine, Health Care > Gladstone Scientists Identify Key Biological… >

Gladstone Scientists Identify Key Biological Mechanism in Multiple Sclerosis

Published: November 29, 2012.
Released by Gladstone Institutes  

SAN FRANCISCO, CA—November 27, 2012—Scientists at the Gladstone Institutes have defined for the first time a key underlying process implicated in multiple sclerosis (MS)—a disease that causes progressive and irreversible damage to nerve cells in the brain and spinal cord. This discovery offers new hope for the millions who suffer from this debilitating disease for which there is no cure.

Researchers in the laboratory of Gladstone Investigator Katerina Akassoglou, PhD, have identified in animal models precisely how a protein that seeps from the blood into the brain sets off a response that, over time, causes the nerve cell damage that is a key indicator of MS. These findings, which are reported in the latest issue of Nature Communications, lay the groundwork for much-needed therapies to treat this disease.

MS, which afflicts more than two million people worldwide, develops when the body's immune system attacks the brain. This attack damages nerve cells, leading to a host of symptoms including numbness, fatigue, difficulty walking, paralysis and loss of vision. While some drugs can delay these symptoms, they do not treat the disease's underlying cause—which researchers are only just beginning to understand.

"To successfully treat MS, we must first identify what triggers the disease and what enables its progression," said Dr. Akassoglou, who also directs the Gladstone Center for In Vivo Imaging Research and is a professor of neurology at the University of California, San Francisco, with which Gladstone is affiliated. "Here, we have shown that the leakage of blood in the brain acts as an early trigger that sets off the brain's inflammatory response—creating a neurotoxic environment that damages nerve cells."

Dr. Akassoglou and her team reached this conclusion by using advanced imaging techniques to monitor the disease's progression in the brain and spinal cord of mice modified to mimic the signs of MS. Traditional techniques only show "snapshots" of the disease's pathology. However, this analysis allows researchers to study individual cells within the living brain—and to monitor in real-time what happens to these cells as the disease worsens over time.

"In vivo imaging analysis let us observe in real-time which molecules crossed the blood-brain barrier," said Dimitrios Davalos, PhD, Gladstone staff research scientist, associate director of the imaging center and the paper's lead author. "Importantly, this analysis helped us identify the protein fibrinogen as the key culprit in MS, by demonstrating how its entry into the brain through leaky blood vessels impacted the health of individual nerve cells."

Fibrinogen, a blood protein that is involved in coagulation, is not found in the healthy brain. In vivo imaging over different stages of disease revealed, however, that a disruption in the blood-brain barrier allows blood proteins—and specifically fibrinogen—to seep into the brain. Microglia—immune cells that act as the brain's first line of defense—initiate a rapid response to fibrinogen's arrival. They release large amounts of chemically reactive molecules called 'reactive oxygen species.' This creates a toxic environment within the brain that damages nerve cells and eventually leads to the debilitating symptoms of MS.

Importantly, the team found a strategy to halt this process by genetically modifying fibrinogen in the animal models. This strategy disrupted the protein's interaction with the microglia without affecting fibrinogen's essential role as a blood coagulant. In these models, the microglia did not react to fibrinogen's arrival and did not create a toxic environment. As a result, the mice failed to show the type of progressive nerve cell damage seen in MS.

"Dr. Akassoglou's work reveals a novel target for treating MS—which might protect nerve cells and allow early intervention in the disease process," said Ursula Utz, PhD, MBA, a program director at The National Institutes of Health's National Institute of Neurological Disorders and Stroke, which provided funding for this research.

"Indeed, targeting the fibrinogen-microglia interactions to halt nerve-cell damage could be a new therapeutic strategy," said Dr. Akassoglou. "At present we are working to develop new approaches that specifically target the damaging effects of fibrinogen in the brain. We also continue to use in vivo imaging techniques to further enhance our understanding of what triggers the initiation and progression of MS. "




The above story is based on materials provided by Gladstone Institutes.

Translate this page: Chinese French German Italian Japanese Korean Portuguese Russian Spanish


comments powered by Disqus


Related »

Brain 
8/1/12 
★★★ 
Wayne State Research Team Finds Possible Clue to Progression of MS
DETROIT -- Wayne State University School of Medicine researchers, working with colleagues in Canada, have found that one or …
Sclerosis 
11/19/12 
Multiple Sclerosis 'Immune Exchange' Between Brain And Blood Is Uncovered
DNA sequences obtained from a handful of patients with multiple sclerosis at the University of California, San Francisco (UCSF) …
Brain 
10/27/11 
Medical Researchers ID Potential New Drug Target That Could Stop Debilitating Effects of MS
Medical researchers at the University of Alberta have discovered a potential new drug target for Multiple Sclerosis that could …
Opcs 
5/9/13 
Researchers Discover Dynamic Behavior of Progenitor Cells in Brain
By monitoring the behavior of a class of cells in the brains of living mice, neuroscientists at Johns Hopkins …
Cells 
2/8/14 
Study Identifies Protein to Repair Damaged Brain Tissue in MS
Vittorio Gallo, PhD, Director of the Center for Neuroscience Research at Children's National Health System, and other researchers have …
Signals 
2/20/13 
★★★ 
Fragile X Makes Brain Cells Talk Too Much
The most common inherited form of mental retardation and autism, fragile X syndrome, turns some brain cells into chatterboxes, …
Threshold 
4/24/14 
Study Suggests Targeting B Cells May Help with MS
PHILADELPHIA – A new study suggests that targeting B cells, which are a type of white blood cell in …
Brain 
11/17/10 
Why Estrogen Makes You Smarter
CHICAGO --- Estrogen is an elixir for the brain, sharpening mental performance in humans and animals and showing promise …
Cells 
1/13/12 
★★★★ 
Brain Glia Cells Increase Their DNA Content to Preserve Vital Blood-brain Barrier
The blood-brain barrier is essential for maintaining the brain's stable environment—preventing entry of harmful viruses and bacteria and isolating …
Brain 
1/15/15 
Extra-short Nanowires Best for Brain
If in the future electrodes are inserted into the human brain - either for research purposes or to treat …
More » 
 
© Newsline Group  |  About  |  Privacy Policy  |  Feedback  |  Mobile