Home  |  Top News  |  Most Popular  |  Video  |  Multimedia  |  News Feeds  |  Feedback
  Medicine  |  Nature & Earth  |  Biology  |  Technology & Engineering  |  Space & Planetary  |  Psychology  |  Physics & Chemistry  |  Economics  |  Archaeology
Top > Medicine, Health Care > Study IDs Gene That Turns… >
Study IDs Gene That Turns Carbs into Fat

Published: December 6, 2012.
By University of California - Berkeley
http://www.berkeley.edu

Berkeley — A gene that helps the body convert that big plate of holiday cookies you just polished off into fat could provide a new target for potential treatments for fatty liver disease, diabetes and obesity.

Researchers at the University of California, Berkeley, are unlocking the molecular mechanisms of how our body converts dietary carbohydrates into fat, and as part of that research, they found that a gene with the catchy name BAF60c contributes to fatty liver, or steatosis.

In the study, to be published online Dec. 6 in the journal Molecular Cell, the researchers found that mice that have had the BAF60c gene disabled did not convert carbohydrates to fat, despite eating a high-carb diet.

"This work brings us one step forward in understanding fatty liver disease resulting from an excessive consumption of carbohydrates," said the study's senior author, Hei Sook Sul, professor at UC Berkeley's Department of Nutritional Science and Toxicology. "The discovery of this role of BAF60c may eventually lead to the development of treatment for millions of Americans with fatty liver and other related diseases."

More than three-quarters of obese people and one-third of Americans have fatty liver, or steatosis, according to epidemiological studies. A diet excessively high in bread, pasta, rice, soda and other carbohydrates is a major risk factor for fatty liver, which is marked by the abnormal accumulation of fat within a liver cell.

After a meal, carbohydrates are broken down into glucose, an immediate source of energy. Excess glucose gets stored in the liver as glycogen or, with the help of insulin, converted into fatty acids, circulated to other parts of the body and stored as fat in adipose tissue. When there is an overabundance of fatty acids, fat also builds up in the liver.

"Fatty liver caused by the high intake of carbohydrates can be as bad as that due to excessive alcohol intake, and it contributes to various diseases including type 2 diabetes," said Sul. "The conversion of excess glucose into fatty acids occurs in the liver, but there are many steps in this process that have not been fully understood."

Sul's lab previously reported the role of a gene called DNA-PK in this process. The researchers found that DNA-PK, known to help repair breaks in DNA, acts as a signaling molecule for insulin that enhances the formation of fat from carbohydrates in the liver.

The newest discovery puts the spotlight on BAF60c, a molecule known for its role in remodeling the structure of chromatin, a mass of DNA and proteins found in the cell's nucleus.

The lead authors of the study, postdoctoral researcher Yuhui Wang and former graduate student Roger Wong, both at Sul's laboratory, discovered BAF60c's role in the conversion of dietary carbohydrates to fat. They found that BAF60c resides in the cytoplasm, outside the cell's nucleus. Once insulin binds to a receptor on the cell surface, it sends a signal to modify BAF60c so that it enters the nucleus. There, BAF60c binds to regions of chromatin that contain genes coding for various enzymes involved in the conversion of carbohydrates to fat. This action sends the signal to churn out more of the enzymes, enhancing the conversion of carbohydrates to fat.

The researchers tested the role of BAF60c by both increasing and decreasing its function in various experiments in live mice. Mice that had triple the normal levels of BAF60c in their livers produced significantly higher levels of fat-producing genes, even when they were fasting. In contrast, disabling BAF60c disrupted the formation of fatty acids, even when the mice feasted on a carb-heavy diet.

The researchers point out that fatty liver disease can result from overindulging in carbohydrates. They suggest avoiding refined sugars that increase blood insulin levels quickly, but note that there are complex carbohydrates — such as those in legumes, fruits and vegetables — that should be part of a healthy diet.

"Limiting consumption of sodas, cakes and cookies is a good idea for many reasons, even during the holidays," said Sul.


Show Reference »


Translate this page: Chinese French German Italian Japanese Korean Portuguese Russian Spanish


 
All comments are reviewed before being posted. We cannot accept messages that refer a product, or web site.If you are looking for a response to a question please use our another feedback page.
Related »

Omega-3 
5/15/12 
Why Omega-3 Oils Help at the Cellular Level
By University of California - San Diego
For the first time, researchers at the University of California, San Diego have peered inside a living mouse cell and mapped the processes that power the celebrated health benefits …
Milk 
5/26/12 
Hazelnuts Improve Infant Formula
By University of Georgia
Athens, Ga. – Human breast milk is the best source of food for infants. University of Georgia researchers have found what may be a new second best—formula made from …
Fatty 
3/29/10 
Microbes Reprogrammed to Ooze Oil for Renewable Biofuel
By Arizona State University
Using genetic sleight of hand, researcher Xinyao Liu and professor Roy Curtiss at Arizona State University's Biodesign Institute have coaxed photosynthetic microbes to secrete oil—bypassing energy and cost barriers …
Fatty 
3/11/13 
★★ 
Long-suspected Cause of Blindness from Eye Disease Disproved
By University of Utah Health Sciences
(SALT LAKE CITY)—Vision scientists long have thought that lack of very long chain fatty acids in photoreceptor cells caused blindness in children with Stargardt type 3 retinal degeneration, an …
Eggs 
8/17/11 
Maternal Fat Has Negative Impact on Embryo Development
By University of Hull
Exposing eggs to high levels of saturated fatty acids – as commonly found in the ovaries of obese women and those with Type II diabetes – compromises the development …
Omega-3 
5/2/10 
Pitt Pharmacologists Go on a Molecular Fishing Trip And Hook Prize Catch
By University of Pittsburgh Schools of the Health Sciences
PITTSBURGH, May 2 – Scientists at the University of Pittsburgh School of Medicine went on a molecular fishing trip and netted a catch of new mediators that not only …
Omega-6 
2/13/13 
Cellular Renewal Process May Underlie Benefits of Omega Fatty Acids
By Massachusetts General Hospital
A search for genes that change their levels of expression in response to nutrient deprivation has uncovered potential clues to the mechanism underlying the health benefits of omega fatty …
Dha 
4/12/10 
U of I Study: Lack of Omega-3 Fatty Acid Linked to Male Infertility
By University of Illinois at Urbana-Champaign
URBANA – According to a University of Illinois study, omega-3 fatty acids may be good for more than heart health. A little-known omega-3 may have implications for treating male …
More » 
 
© Newsline Group  |  About  |  Privacy Policy  |  Feedback  |  Mobile  |  Japanese Edition