Home  |  Top News  |  Most Popular  |  Video  |  Multimedia  |  News Feeds  |  Feedback
  Medicine  |  Nature & Earth  |  Biology  |  Technology & Engineering  |  Space & Planetary  |  Psychology  |  Physics & Chemistry  |  Economics  |  Archaeology
Top > Biology > Scientists Discover How HIV Virus… >
Scientists Discover How HIV Virus Gains Access to Carrier Immune Cells to Spread Infection

Published: December 19, 2012.
By Public Library of Science
http://www.plos.org

Scientists from the AIDS Research Institute IrsiCaixa have identified how HIV, the virus that causes AIDS, enters the cells of the immune system enabling it to be dispersed throughout an organism. The new study is published December 18 in the open access journal PLOS Biology.

One of the reasons why we do not yet have a cure for HIV infection is that the virus infects cells of the immune system that would normally fight such an infection. The main targets of HIV are white blood cells named CD4 T lymphocytes (so called because they have the protein CD4 in their membrane), and while more than 20 different drugs are available today to help control HIV, all of them act by blocking the cycle that HIV follows to infect these CD4 T lymphocytes. However, these treatments do not fully act on another cell of the immune system, the dendritic cell, which takes up HIV and spreads it to target CD4 T lymphocytes.

Mature dendritic cells are responsible for activating an immune response by CD4 T lymphocytes, but when they carry viruses, their contact with T lymphocytes causes the virus to be passed on, thus increasing viral spread.

The results continue the research led by ICREA researchers at IrsiCaixa, Javier Martínez-Picado, and Nuria Izquierdo-Useros, in collaboration with research groups from Heidelberg University, Germany, and the University of Lausanne, Switzerland. This team published a previous PLOS Biology paper in April 2012, in which they identified molecules, called gangliosides, located on the surface of HIV that are recognized by dendritic cells and are necessary for viral uptake. The new results now identify a molecule on the surface of dendritic cells that recognizes and binds the gangliosides and allows HIV to be taken up by dendritic cells and transmitted to its ultimate target: T lymphocytes.

"We have observed that the protein that acts as a lock for the entrance of HIV could also facilitate the entrance of other viruses," explains Nuria Izquierdo-Useros. "Therefore, our results could also help us understand how other infections might exploit this mechanism of dispersion."

In order to identify the precise molecule located on the membrane of the dendritic cells capable of capturing HIV, the researchers studied one family of proteins that are present on the surface of these cells, called Siglecs. It is known that these proteins bind to the gangliosides on the HIV surface. In the laboratory, they mixed the virus with dendritic cells that displayed different quantities of Siglec-1, and found that a higher quantity of Siglec-1 led to those dendritic cells capturing more HIV, which in turn allowed for enhanced transmission of HIV to CD4 T lymphocytes, a process called trans-infection.

The team then tried inhibiting the Siglec-1 protein. Doing so in the laboratory, they found that the dendritic cells lost their capacity to capture HIV and, importantly, they also lost their ability to transfer HIV to CD4 T lymphocytes. With all these data, the scientists concluded that Siglec-1 is the molecule responsible for HIV entrance into the dendritic cells, and could therefore become a new therapeutic target.

"We had the key and now we have found a lock," explains Javier Martínez-Picado. "Now we are already working on the development of a drug that could block this process to improve the efficacy of the current existing treatments against AIDS".


Show Reference »


Translate this page: Chinese French German Italian Japanese Korean Portuguese Russian Spanish


Disclaimer: The views expressed in this article are those of the authors and do not necessarily reflect the official policy or position of the ScienceNewsline.
Related »

Cells 
7/29/12 
Discovery of New White Blood Cell Reveals Target for Better Vaccine Design
By Newcastle University
Researchers in Newcastle and Singapore have identified a new type of white blood cell which activates a killing immune response to an external source – providing a new potential …
Virus 
10/31/13 
Danish Research Provides New Knowledge About the Body's Fight Against HIV
By Aarhus University
When a person is infected with HIV the virus infects the cells of the immune system. From here the virus spreads around the body, while at the same time …
Immune 
1/22/13 

Immune System Molecule with Hidden Talents
By Helmholtz Centre for Infection Research
Immune 
11/12/12 
HIV-1 Vaccine Development: Pinning Down a Moving Target
By Journal of Clinical Investigation
HIV-1 is a genetically diverse collection of viruses, making it a moving target in vaccine development. In a study published in the Journal of Clinical Investigation, researchers led by …
Virus 
6/28/12 
Flu Immunity Is Affected by How Many Viruses Actually Cause the Infection
By Federation of American Societies for Experimental Biology
Bethesda, MD—Not only does the type of flu virus affect a patient's outcome, but a new research report appearing in the Journal of Leukocyte Biology suggests that the number …
Mutant 
6/11/13 
Study Builds Dossier on JC Polyomavirus
By Brown University
PROVIDENCE, R.I. Brown University — The JC polyomavirus is clearly opportunistic. It infects half the population but lethally destroys brain tissue only in immunocompromised patients — and it may …
Gowans 
3/25/14 
New Technique Brings Us Closer to HIV And Hepatitis C Vaccines
By University of Adelaide
Plans for a new type of DNA vaccine to protect against the deadly HIV and Hepatitis C viruses have taken an important step forward, with University of Adelaide researchers …
Compound 
11/3/10 
A Sweet Discovery Raises Hope for Treating Ebola, Lassa, Marburg And Other Fast-acting Viruses
By Federation of American Societies for Experimental Biology
When a team of European researchers sought to discover how a class of antiviral drugs worked, they looked in an unlikely place: the sugar dish. A new research report …
More » 

Most Popular - Biology »
MALES »
Picky Male Black Widow Spiders Prefer Well-fed Virgins
CHROMOSOME »
From Liability to Viability: Genes on the Y Chromosome Prove Essential for Male Survival
CAMBRIDGE, Mass. (April 23, 2014) – Despite a well-documented history of dramatic genetic decay, the human Y chromosome has over the course of millions of years of evolution managed …
URCHIN »
Three-banded Panther Worm Debuts as a New Model in the Study of Regeneration
BACTERIA »
Plants Send Out Signals Attracting Harmful Bacteria, MU Study Finds
SAVOLAINEN »
Two New US Turtle Species Described
ScienceNewsline  |  About  |  Privacy Policy  |  Feedback  |  Mobile  |  Japanese
The selection and placement of stories are determined automatically by a computer program. All contents are copyright of their owners except U.S. Government works. U.S. Government works are assumed to be in the public domain unless otherwise noted. Everything else copyright ScienceNewsline.