Home  |  Top News  |  Most Popular  |  Video  |  Multimedia  |  News Feeds  |  Feedback
  Medicine  |  Nature & Earth  |  Biology  |  Technology & Engineering  |  Space & Planetary  |  Psychology  |  Physics & Chemistry  |  Economics  |  Archaeology
Top > Technology & Engineering > Power Spintronics: Producing AC Voltages… >
Power Spintronics: Producing AC Voltages by Manipulating Magnetic Fields

Published: January 3, 2013.
By American Institute of Physics
http://www.aip.org

Scientists are putting a new spin on their approach to generating electrical current by harnessing a recently identified electromotive force known as spinmotive force, which is related to the field of spintronics that addresses such challenges as improving data storage in computers. Now, a novel application of spintronics is the highly efficient and direct conversion of magnetic energy to electric voltage by using magnetic nanostructures and manipulating the dynamics of magnetization. According to a report published in the American Institute of Physics' (AIP) journal Applied Physics Letters, this conversion could be the foundation for future development of spin-based power electronics, a field the authors call "power spintronics." Their newly published results of an experimental model suggest that a power spintronics-based device may one day be a promising approach to obtaining alternating current (AC) voltages from direct current (DC) magnetic fields. The researchers demonstrated for the first time the feasibility of a device that generates a voltage based on manipulating an effective magnetic field within a nanowire that arises from width modulation. Technically such a field is not a true magnetic field, but it can be viewed as such. The team tested a one-dimensional model. It showed that DC magnetic field characteristics such as magnitude, and design parameters such as wire width, can be used to control, or "tune," the frequency and amplitude of AC current. Importantly, their results showed that a variable frequency ranging from megahertz to gigahertz can be achieved. Control and range in tuning ability are highly desirable management features in generating current. The team's results suggest that applying their spintronics approach may one day meet a variety of commercial energy demands due to control and scalability.


Show Reference »


Translate this page: Chinese French German Italian Japanese Korean Portuguese Russian Spanish


 
All comments are reviewed before being posted. We cannot accept messages that refer a product, or web site.If you are looking for a response to a question please use our another feedback page.
Related »

Generators 
3/1/13 
Improved Synchronicity: Preventive Care for the Power Grid
By Northwestern University
President Obama in this year's State of the Union address talked about the future of energy and mentioned "self-healing power grids" -- a grid that is able to keep …
Power 
4/8/14 
Is the Power Grid Too Big?
By American Institute of Physics
WASHINGTON D.C., April 8, 2014 -- Some 90 years ago, British polymath J.B.S. Haldane proposed that for every animal there is an optimal size -- one which allows it …
Power 
12/12/13 

Keeping the Lights On
By University of California - Santa Barbara
Data 
2/14/13 
Quantum Cryptography Put to Work for Electric Grid Security
By Los Alamos National Laboratory
LOS ALAMOS, N.M., Feb. 14, 2013—A Los Alamos National Laboratory quantum cryptography (QC) team has successfully completed the first-ever demonstration of securing control data for electric grids using quantum …
Confidence 
7/25/12 
★ 
New Method to Encourage Virtual Power Plants for Efficient Renewable Energy Production
By University of Southampton
Researchers from the University of Southampton have devised a novel method for forming virtual power plants to provide renewable energy production in the UK. In the last decade, …
More » 
 
© Newsline Group  |  About  |  Privacy Policy  |  Feedback  |  Mobile  |  Japanese Edition
All contents are copyright of their owners except U.S. Government works. U.S. Government works are assumed to be in the public domain unless otherwise noted. Everything else copyright ScienceNewsline.