Home  |  Top News  |  Most Popular  |  Video  |  Multimedia  |  News Feeds  |  Feedback
  Medicine  |  Nature & Earth  |  Biology  |  Technology & Engineering  |  Space & Planetary  |  Psychology  |  Physics & Chemistry  |  Economics  |  Archaeology
Top > Medicine, Health Care > Sickle Cells Show Potential to… >
Sickle Cells Show Potential to Attack Aggressive Cancer Tumors

Published: January 9, 2013.
By Duke University Medical Center
http://www.dukemednews.org

DURHAM, N.C. – By harnessing the very qualities that make sickle cell disease a lethal blood disorder, a research team led by Duke Medicine and Jenomic, a private cancer research company in Carmel, Calif., has developed a way to deploy the misshapen red blood cells to fight cancer tumors.

Reporting in the Jan. 9, 2013, edition of the on-line journal, PLOS ONE, the researchers describe a process of exploiting sickle-shaped red blood cells to selectively target oxygen deprived cancer tumors in mice and block the blood vessels that surround them.

"Sickle cells appear to be a potent way to attack hypoxic (oxygen-starved) solid tumors, which are notable for their resistance to existing cancer chemotherapy agents and radiation," said senior author Mark W. Dewhirst, DVM, PhD, a radiation oncologist and director of Duke's Tumor Microcirculation Laboratory. "This is an exciting finding that suggests a potential new approach to fighting tumors that are currently associated with aggressive disease."

"The very qualities that make sickle cells a danger to people with the inherited genetic disorder can be turned against tumors to fight cancer," said lead author David S. Terman, M.D., head of Molecular Genetics at Jenomic. "Our approach using sickle cells is a novel strategy with broad therapeutic potential that could be directed at breast cancers, prostate cancers, and many other solid tumors that develop resistance to current therapies."

Sickle cells are typically associated with a potentially life-threatening disease in which red blood cells are deformed in the shape of a crescent moon or sickle. Unlike healthy red blood cells that flow smoothly through vessels, the sickle cells get stuck, causing blockages that are painful and damaging to tissue.

A collaborative effort between Duke researchers and scientists from Jenomic began in 2006 to explore whether sickle cells could similarly build clots in the vast networks of blood vessels that feed oxygen-starved, or hypoxic, cancer tumors, which can grow increasingly lethal as their oxygen needs escalate.

In a National Institutes of Health-funded study of mice with breast cancer, the researchers gave the animals an infusion of fluorescently dyed sickle cells and viewed them under special window chambers that provide real-time observation of processes inside the body. Within five minutes, the deformed cells began to adhere to the blood vessels surrounding the hypoxic tumors. Over 30 minutes, the cells had formed clots and began blocking the small blood vessels that fed the tumor.

Dewhirst said the sickle cells stick like Velcro to the hypoxic tumor because it produces an abundance of adhesion molecules as part of its distress from oxygen deprivation. Normal cells don't produce the adhesion molecules, so there's nothing for the sickle cells to snag onto.

"Unlike normal red blood cells, we found that sickle cells show a highly unique natural attraction to oxygen deprived tumors where they stick, cluster and plug tumor blood vessels. Once clustered within the tumor, the sickle cells deposit a toxic iron residue as they die, causing tumor cell death," Terman said.

To boost that caustic effect, the researchers added zinc compounds (zinc protoporphyrin alone or in combination with doxorubicin) to the sickle cells, which caused even greater oxidative stress in the tumor and surrounding blood vessels. This resulted in a dramatic delay in tumor growth, quadrupling the amount of time the tumors were inactive compared to tumors exposed to regular blood cells. Mice showed no acute toxicity to the sickle cell treatment.

"In contrast to drug treatments directed only to the hypoxic tumor cell, our approach uses the inherent qualities of sickle cells to induce injury to the tumor and the vascular micro-environment that feeds the tumor," Terman said.

Dewhirst and Terman said the research team would continue to conduct studies in animals before moving to human trials.


Show Reference »


Translate this page: Chinese French German Italian Japanese Korean Portuguese Russian Spanish


Disclaimer: The views expressed in this article are those of the authors and do not necessarily reflect the official policy or position of the ScienceNewsline.
Related »

Cells 
8/8/13 

TUM Researchers Investigate 59 Tumor Cell Lines
By Technische Universitaet Muenchen
Cells 
2/14/13 
Hopkins Scientists Create Method to Personalize Chemotherapy Drug Selection
By Johns Hopkins Medicine
In laboratory studies, scientists at the Johns Hopkins Kimmel Cancer Center have developed a way to personalize chemotherapy drug selection for cancer patients by using cell lines created from …
Activation 
11/25/13 

Killer Cocktail Fights Brain Cancer
By Rockefeller University Press
Drug 
4/1/10 
Treatment Resistance in Some Cancer Cells May Be Reversible
By Massachusetts General Hospital
The ability of cancer cells to resist treatment with either targeted drug therapies or traditional chemotherapy may, in some cases, result from a transient state of reversible drug "tolerance." …
Cells 
3/11/10 
Researchers Discover Brain Tumor's 'Grow-or-go' Switch
By Ohio State University Medical Center
COLUMBUS, Ohio – Cancer cells in rapidly growing brain tumors must adjust to periods of low energy or die. When energy levels are high, tumor cells grow and proliferate. …
Hypoxic 
2/14/11 
New Combination Therapy for Solid Tumors?
By Journal of Clinical Investigation
Most, if not all, solid tumors contain regions that are not well oxygenated. Tumor cells in these regions, which are known as hypoxic regions, are usually resistant to the …
Cells 
4/8/14 

Breast Cancer Cell Subpopulation Cooperation Can Spur Tumor Growth
By Penn State
Radiation 
8/29/13 
★ 
Inflammatory Protein Converts Glioblastoma Cells into Most Aggressive Version
By University of Texas M. D. Anderson Cancer Center
HOUSTON -- A prominent protein activated by inflammation is the key instigator that converts glioblastoma multiforme cells to their most aggressive, untreatable form and promotes resistance to radiation therapy, …
More » 

Most Popular - Medicine »
GENES »
Loss of Memory in Alzheimer's Mice Models Reversed Through Gene Therapy
MUTATIONS »
Applying Math to Biology: Software Identifies Disease-causing Mutations in Undiagnosed Illnesses
(SALT LAKE CITY)–A computational tool developed at the University of Utah (U of U) has successfully identified diseases with unknown gene mutations in three separate cases, U of U …
CHD »
Study: Iron Consumption Can Increase Risk for Heart Disease
TUMORS »
The Immune System's Redesigned Role in Fighting Cancerous Tumors
LOS ANGELES (March 11, 2014) – Researchers in the Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute eradicated solid tumors in laboratory mice using a novel combination of two targeted agents. …
VACCINATION »
Impact of Whooping Cough Vaccination Revealed
The most comprehensive study to date of the family of bacteria that causes whooping cough points to more effective vaccine strategies and reveals surprising findings about the bacteria's origin …
ScienceNewsline  |  About  |  Privacy Policy  |  Feedback  |  Mobile  |  Japanese
The selection and placement of stories are determined automatically by a computer program. All contents are copyright of their owners except U.S. Government works. U.S. Government works are assumed to be in the public domain unless otherwise noted. Everything else copyright ScienceNewsline.