Home  |  Top News  |  Most Popular  |  Video  |  Multimedia  |  News Feeds  |  Feedback
  Medicine  |  Nature & Earth  |  Biology  |  Technology & Engineering  |  Space & Planetary  |  Psychology  |  Physics & Chemistry  |  Economics  |  Archaeology
Top > Medicine, Health Care > Scripps Florida Scientists Uncover Potential… >
Scripps Florida Scientists Uncover Potential Drug Target to Block Cell Death in Parkinson's Disease

Published: January 10, 2013.
By Scripps Research Institute
http://www.scripps.edu

JUPITER, FL, January 10, 2013 – Oxidative stress is a primary villain in a host of diseases that range from cancer and heart failure to Alzheimer's disease, Amyotrophic Lateral Sclerosis and Parkinson's disease. Now, scientists from the Florida campus of The Scripps Research Institute (TSRI) have found that blocking the interaction of a critical enzyme may counteract the destruction of neurons associated with these neurodegenerative diseases, suggesting a potential new target for drug development.

These findings appear in the January 11, 2013 edition of The Journal of Biological Chemistry.

During periods of cellular stress, such as exposure to UV radiation, the number of highly reactive oxygen-containing molecules can increase in cells, resulting in serious damage. However, relatively little is known about the role played in this process by a number of stress-related enzymes.

In the new study, the TSRI team led by Professor Philip LoGrasso focused on an enzyme known as c-jun-N-terminal kinase (JNK). Under stress, JNK migrates to the mitochondria, the part of the cell that generates chemical energy and is involved in cell growth and death. That migration, coupled with JNK activation, is associated with a number of serious health issues, including mitochondrial dysfunction, which has long been known to contribute to neuronal death in Parkinson's disease.

The new study showed for the first time that the interaction of JNK with a protein known as Sab is responsible for the initial JNK localization to the mitochondria in neurons. The scientists also found blocking JNK mitochondrial signaling by inhibiting JNK interaction with Sab can protect against neuronal damage in both cell culture and in the brain.

In addition, by treating JNK with a peptide inhibitor derived from a mitochondrial membrane protein, the team was able to induce a two-fold level of protection of neurons in the substantia nigra pars compacta, the brain region devastated by Parkinson's disease.

The study noted that this inhibition leaves all other cell signaling intact, which could mean potentially fewer side effects in any future therapies.

"This may be a novel way to prevent neuron degeneration," said LoGrasso. "Now we can try to make compounds that block that translocation and see if they're therapeutically viable."


Show Reference »


Translate this page: Chinese French German Italian Japanese Korean Portuguese Russian Spanish


 
All comments are reviewed before being posted. We cannot accept messages that refer a product, or web site.If you are looking for a response to a question please use our another feedback page.
Related »

Disease 
1/21/14 
Quality Control of Mitochondria as a Defense Against Disease
By European Molecular Biology Organization
HEIDELBERG, 20 January 2014 – Scientists from the Montreal Neurological Institute and Hospital in Canada have discovered that two genes linked to hereditary Parkinson's disease are involved in the …
Parkinson 
5/10/10 

Mutations That Cause Parkinson's Disease Prevent Cells from Destroying Defective Mitochondria
By Rockefeller University Press
Schwarz 
11/11/11 
Why Do Neurons Die in Parkinson's Disease?
By Children's Hospital Boston
Current thinking about Parkinson's disease is that it's a disorder of mitochondria, the energy-producing organelles inside cells, causing neurons in the brain's substantia nigra to die or become impaired. …
Mitochondria 
2/14/11 
An Early Step in Parkinson's Disease: Problems with Mitochondria
By Emory University
For the last several years, neurologists have been probing a connection between Parkinson's disease and problems with mitochondria, the miniature power plants of the cell. …
Parkinson 
4/25/13 
★★★ 
Missing Link in Parkinson's Disease Found
By Washington University School of Medicine
Researchers at Washington University School of Medicine in St. Louis have described a missing link in understanding how damage to the body's cellular power plants leads to Parkinson's disease …
Mitophagy 
8/12/13 
Genetic Mutations Linked to Parkinson's Disease
By University College London
Researchers have discovered how genetic mutations linked to Parkinson's disease might play a key role in the death of brain cells, potentially paving the way for the development of …
Mul1 
6/4/14 
UCLA Researchers Identify New Gene Involved in Parkinson's Disease
By University of California - Los Angeles Health Sciences
A team of UCLA researchers has identified a new gene involved in Parkinson's disease, a finding that may one day provide a target for a new drug to prevent …
More » 
 
© Newsline Group  |  About  |  Privacy Policy  |  Feedback  |  Mobile  |  Japanese Edition
All contents are copyright of their owners except U.S. Government works. U.S. Government works are assumed to be in the public domain unless otherwise noted. Everything else copyright ScienceNewsline.