Home  |  Top News  |  Most Popular  |  Video  |  Multimedia  |  News Feeds  |  Feedback
  Medicine  |  Nature & Earth  |  Biology  |  Technology & Engineering  |  Space & Planetary  |  Psychology  |  Physics & Chemistry  |  Economics  |  Archaeology
Top > Medicine, Health Care > Scripps Florida Scientists Uncover Potential… >
Scripps Florida Scientists Uncover Potential Drug Target to Block Cell Death in Parkinson's Disease

Published: January 10, 2013.
By Scripps Research Institute
http://www.scripps.edu

JUPITER, FL, January 10, 2013 – Oxidative stress is a primary villain in a host of diseases that range from cancer and heart failure to Alzheimer's disease, Amyotrophic Lateral Sclerosis and Parkinson's disease. Now, scientists from the Florida campus of The Scripps Research Institute (TSRI) have found that blocking the interaction of a critical enzyme may counteract the destruction of neurons associated with these neurodegenerative diseases, suggesting a potential new target for drug development.

These findings appear in the January 11, 2013 edition of The Journal of Biological Chemistry.

During periods of cellular stress, such as exposure to UV radiation, the number of highly reactive oxygen-containing molecules can increase in cells, resulting in serious damage. However, relatively little is known about the role played in this process by a number of stress-related enzymes.

In the new study, the TSRI team led by Professor Philip LoGrasso focused on an enzyme known as c-jun-N-terminal kinase (JNK). Under stress, JNK migrates to the mitochondria, the part of the cell that generates chemical energy and is involved in cell growth and death. That migration, coupled with JNK activation, is associated with a number of serious health issues, including mitochondrial dysfunction, which has long been known to contribute to neuronal death in Parkinson's disease.

The new study showed for the first time that the interaction of JNK with a protein known as Sab is responsible for the initial JNK localization to the mitochondria in neurons. The scientists also found blocking JNK mitochondrial signaling by inhibiting JNK interaction with Sab can protect against neuronal damage in both cell culture and in the brain.

In addition, by treating JNK with a peptide inhibitor derived from a mitochondrial membrane protein, the team was able to induce a two-fold level of protection of neurons in the substantia nigra pars compacta, the brain region devastated by Parkinson's disease.

The study noted that this inhibition leaves all other cell signaling intact, which could mean potentially fewer side effects in any future therapies.

"This may be a novel way to prevent neuron degeneration," said LoGrasso. "Now we can try to make compounds that block that translocation and see if they're therapeutically viable."


Show Reference »


Translate this page: Chinese French German Italian Japanese Korean Portuguese Russian Spanish


 
All comments are reviewed before being posted. We cannot accept messages that refer a product, or web site.If you are looking for a response to a question please use our another feedback page.
Related »

Compound 
2/11/11 
Scripps Research Compound Blocks Brain Cell Destruction in Parkinson's Disease
By Scripps Research Institute
JUPITER, FL, February 11, 2011 – Scientists from the Florida campus of The Scripps Research Institute have produced the first known compound to show significant effectiveness in protecting brain …
Neuronal 
4/2/12 
Getting Down to the Heart of the (gray) Matter to Treat Parkinson's Disease
By Rockefeller University Press
An agent under consideration for use in PET imaging combats neuronal death to relieve Parkinsonian symptoms in animal models, according to a study published on April 2nd in the …
Parkinson 
2/11/11 
★ 
Naturally Occurring Brain Signaling Chemical May Be Useful in Understanding Parkinson's
By University of South Florida (USF Health)
Targeting the neuroinflammatory causes of Parkinson's disease with a naturally present brain chemical signal could offer a better understanding of the clinical mechanisms of the disease and open a …
Disease 
1/9/12 
New Study Supports View That Lewy Bodies Are Not the Primary Cause of Cell Death in PD
By IOS Press
The pathology of Parkinson's disease is characterized by a loss of dopamine-producing neurons in the pars compacta of the substantia nigra (SN), an area of the brain associated with …
P7c3 
10/1/12 
Potential New Class of Drugs Blocks Nerve Cell Death
By University of Iowa Health Care
Diseases that progressively destroy nerve cells in the brain or spinal cord, such as Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS), are devastating conditions with no cures. …
Action 
6/19/13 
Antioxidant Shows Promise in Parkinson's Disease
By Medical College of Wisconsin
Diapocynin, a synthetic molecule derived from a naturally occurring compound (apocynin), has been found to protect neurobehavioral function in mice with Parkinson's Disease symptoms by preventing deficits in motor …
More » 
 
© Newsline Group  |  About  |  Privacy Policy  |  Feedback  |  Mobile  |  Japanese Edition